Extensions 1→N→G→Q→1 with N=C22×D20 and Q=C2

Direct product G=N×Q with N=C22×D20 and Q=C2
dρLabelID
C23×D20160C2^3xD20320,1610

Semidirect products G=N:Q with N=C22×D20 and Q=C2
extensionφ:Q→Out NdρLabelID
(C22×D20)⋊1C2 = (C2×C20)⋊5D4φ: C2/C1C2 ⊆ Out C22×D20160(C2^2xD20):1C2320,298
(C22×D20)⋊2C2 = D2013D4φ: C2/C1C2 ⊆ Out C22×D2080(C2^2xD20):2C2320,359
(C22×D20)⋊3C2 = C232D20φ: C2/C1C2 ⊆ Out C22×D20160(C2^2xD20):3C2320,587
(C22×D20)⋊4C2 = C2×C204D4φ: C2/C1C2 ⊆ Out C22×D20160(C2^2xD20):4C2320,1147
(C22×D20)⋊5C2 = C2×C22⋊D20φ: C2/C1C2 ⊆ Out C22×D2080(C2^2xD20):5C2320,1159
(C22×D20)⋊6C2 = C2×D10⋊D4φ: C2/C1C2 ⊆ Out C22×D20160(C2^2xD20):6C2320,1161
(C22×D20)⋊7C2 = C2×C4⋊D20φ: C2/C1C2 ⊆ Out C22×D20160(C2^2xD20):7C2320,1178
(C22×D20)⋊8C2 = D4×D20φ: C2/C1C2 ⊆ Out C22×D2080(C2^2xD20):8C2320,1221
(C22×D20)⋊9C2 = D2023D4φ: C2/C1C2 ⊆ Out C22×D2080(C2^2xD20):9C2320,1222
(C22×D20)⋊10C2 = C10.1202+ 1+4φ: C2/C1C2 ⊆ Out C22×D2080(C2^2xD20):10C2320,1325
(C22×D20)⋊11C2 = C22×D40φ: C2/C1C2 ⊆ Out C22×D20160(C2^2xD20):11C2320,1412
(C22×D20)⋊12C2 = C2×C207D4φ: C2/C1C2 ⊆ Out C22×D20160(C2^2xD20):12C2320,1462
(C22×D20)⋊13C2 = D2016D4φ: C2/C1C2 ⊆ Out C22×D2080(C2^2xD20):13C2320,663
(C22×D20)⋊14C2 = C429D10φ: C2/C1C2 ⊆ Out C22×D2080(C2^2xD20):14C2320,1197
(C22×D20)⋊15C2 = D2019D4φ: C2/C1C2 ⊆ Out C22×D2080(C2^2xD20):15C2320,1281
(C22×D20)⋊16C2 = D2021D4φ: C2/C1C2 ⊆ Out C22×D2080(C2^2xD20):16C2320,1302
(C22×D20)⋊17C2 = C2×C8⋊D10φ: C2/C1C2 ⊆ Out C22×D2080(C2^2xD20):17C2320,1418
(C22×D20)⋊18C2 = C22×D4⋊D5φ: C2/C1C2 ⊆ Out C22×D20160(C2^2xD20):18C2320,1464
(C22×D20)⋊19C2 = C2×C20⋊D4φ: C2/C1C2 ⊆ Out C22×D20160(C2^2xD20):19C2320,1475
(C22×D20)⋊20C2 = C2×D4⋊D10φ: C2/C1C2 ⊆ Out C22×D2080(C2^2xD20):20C2320,1492
(C22×D20)⋊21C2 = C10.1462+ 1+4φ: C2/C1C2 ⊆ Out C22×D2080(C2^2xD20):21C2320,1502
(C22×D20)⋊22C2 = C22×D4×D5φ: C2/C1C2 ⊆ Out C22×D2080(C2^2xD20):22C2320,1612
(C22×D20)⋊23C2 = C22×Q82D5φ: C2/C1C2 ⊆ Out C22×D20160(C2^2xD20):23C2320,1616
(C22×D20)⋊24C2 = C2×D48D10φ: C2/C1C2 ⊆ Out C22×D2080(C2^2xD20):24C2320,1619
(C22×D20)⋊25C2 = C22×C4○D20φ: trivial image160(C2^2xD20):25C2320,1611

Non-split extensions G=N.Q with N=C22×D20 and Q=C2
extensionφ:Q→Out NdρLabelID
(C22×D20).1C2 = (C2×C4)⋊9D20φ: C2/C1C2 ⊆ Out C22×D20160(C2^2xD20).1C2320,292
(C22×D20).2C2 = (C2×Dic5)⋊3D4φ: C2/C1C2 ⊆ Out C22×D20160(C2^2xD20).2C2320,299
(C22×D20).3C2 = D20.31D4φ: C2/C1C2 ⊆ Out C22×D2080(C2^2xD20).3C2320,358
(C22×D20).4C2 = (C2×C4)⋊6D20φ: C2/C1C2 ⊆ Out C22×D20160(C2^2xD20).4C2320,566
(C22×D20).5C2 = (C2×C4)⋊3D20φ: C2/C1C2 ⊆ Out C22×D20160(C2^2xD20).5C2320,618
(C22×D20).6C2 = C2×D205C4φ: C2/C1C2 ⊆ Out C22×D20160(C2^2xD20).6C2320,739
(C22×D20).7C2 = C2×D10.D4φ: C2/C1C2 ⊆ Out C22×D2080(C2^2xD20).7C2320,1082
(C22×D20).8C2 = C2×C4.D20φ: C2/C1C2 ⊆ Out C22×D20160(C2^2xD20).8C2320,1148
(C22×D20).9C2 = C2×D10.13D4φ: C2/C1C2 ⊆ Out C22×D20160(C2^2xD20).9C2320,1177
(C22×D20).10C2 = C22×C40⋊C2φ: C2/C1C2 ⊆ Out C22×D20160(C2^2xD20).10C2320,1411
(C22×D20).11C2 = C2×D206C4φ: C2/C1C2 ⊆ Out C22×D20160(C2^2xD20).11C2320,592
(C22×D20).12C2 = (C2×D20)⋊22C4φ: C2/C1C2 ⊆ Out C22×D20160(C2^2xD20).12C2320,615
(C22×D20).13C2 = C4⋊C436D10φ: C2/C1C2 ⊆ Out C22×D2080(C2^2xD20).13C2320,628
(C22×D20).14C2 = D20.36D4φ: C2/C1C2 ⊆ Out C22×D2080(C2^2xD20).14C2320,673
(C22×D20).15C2 = C2×C20.46D4φ: C2/C1C2 ⊆ Out C22×D2080(C2^2xD20).15C2320,757
(C22×D20).16C2 = C23.48D20φ: C2/C1C2 ⊆ Out C22×D2080(C2^2xD20).16C2320,758
(C22×D20).17C2 = C2×D208C4φ: C2/C1C2 ⊆ Out C22×D20160(C2^2xD20).17C2320,1175
(C22×D20).18C2 = C427D10φ: C2/C1C2 ⊆ Out C22×D2080(C2^2xD20).18C2320,1193
(C22×D20).19C2 = C22×Q8⋊D5φ: C2/C1C2 ⊆ Out C22×D20160(C2^2xD20).19C2320,1479
(C22×D20).20C2 = C2×C20.23D4φ: C2/C1C2 ⊆ Out C22×D20160(C2^2xD20).20C2320,1486
(C22×D20).21C2 = C2×C4×D20φ: trivial image160(C2^2xD20).21C2320,1145

׿
×
𝔽